LiveZilla Live Chat Software

کنسرسيوم دانشگاهيان و متخصصان ايران

نام کاربری یا پست الکترونیکی
رمز عبور

تازه های مهندسی پزشکی ttedit کنسرسیوم دانشگاهیان و متخصصان ایران - تازه های مهندسی پزشکی

پرینترهای سه بعدی در مهندسی پزشکی

پرینترهای سه‌بعدی از سفارش غذا تا پیوند عضو

این روزها پرینتر یا چاپگرهای سه بعدی دیگر نه یک رویا و نه یک محصول غیرکاربردی هستند که فقط بتوان در کارخانه‌ها از آن استفاده کرد. بلکه این محصول در دستان شماست تا بتوانید یک قطعه خراب یکی از وسایلتان را پرینت بگیرید و بلافاصله دریافت کنید.

تکنولوژی جدید پرینترهای سه‌بعدی برای تحقق یک رویای دیرینه انسان مدرن طراحی شده است.

امروز سیطره این پرینترهای سه بعدی تا آنجا گسترده شده است که می‌توان از یک لنز پرینت و با آن عکس گرفت یا نقاشی‌های تخیلی بچه‌ها را به نمونه‌های واقعی سه بعدی تبدیل کرد و یا به ازای پرداخت ناچیز به یک شرکت ژاپنی جسم سه بعدی جنین به دنیا نیامده‌تان را برای خود داشته باشید.

با ورود پرینترهای سه بعدی به عرصه علوم پزشکی، پزشکان راه آسان‌تری برای آموزش آناتومی انسان دارند و علاوه بر آن برای اینکه تمرینات جراحی را در دنیای حقیقی انجام دهند دیگر نیازی به شکافتن جسد انسانها نیست.

از زمانی که پرینترهای سه‌بعدی توانستند اعضای بدن انسان را پرینت گرفته و برای نمایش در ابعاد سه گانه در کلاس‌ها آماده کنند جراحان نیز می‌توانند پیش از اینکه بیمار را زیر تیغ جراحی بگذارند، چاقویشان را روی نمونه‌های سه بعدی قرار دهند و جراحی را روی مدل‌ انجام داده و از نتیجه آن مطمئن شوند.

شبیه سازی قبل از عمل با پرینترهای سه بعدی

غول‌های تکنولوژی جدید از کجا وارد دنیای امروزی شدند؟

آنچه با نام پرینت کردن سه‌بعدی شناخته می‌شود، به فرایندی اطلاق می‌شود که طی آن با استفاده از مواد خام، از یک مدل دیجیتالی یک شی سه بعدی قابل لمس ساخته می‌شود. اولین پرینتر سه بعدی را چاک هال در سال ۱۹۸۴معرفی کرد که دارای ویژگی‌هایی است که در پرینترهای سه بعدی امروزی نیز دیده‌ می‌شود. اگرچه پرینترهای سه بعدی اولیه چنان گران قیمت بود که برای ورود به فروشگاه‌ها و بازار تکنولوژی مناسب نبودند اما با ورود به قرن بیست و یکم چنان قیمت این پرینترها کاهش پیدا کرد که تکنولوژی تازه توانست راه خود را به عمومی ترین بازارها باز کند.

قیمت پرینترهای سه بعدی از سال ۲۰۱۰تا ۲۰۱۳تنها طی سه سال از ۲۰هزار دلار به ۱۰۰۰دلار افت داشت و این روزها نیز می‌توان پرینترهایی را پیدا کرد که حتی قیمتی پایین‌تر از ۵۰۰دلار دارند و همین امر موجب شد که هر ساله پرینترهای سه بعدی جای بیشتری را در سبد تکنولوژی مصرف‌کننده‌های عادی برای خود باز کنند.

معماری، طراحی صنعتی، طراحی خودرو، صنایع هوایی، صنایع دفاع و مهندسی از جمله حوزه‌هایی است که از تغییرات ناشی از ورود تکنولوژی پرینترهای سه بعدی بی‌نصیب نمانده است. از سوی دیگر با افزایش محبوبیت این دستاورد در بین مشتریان عامی‌تر تکنولوژی، پرینترهای سه بعدی توانستند راه خود را تا بازار تکنولوژی‌های پزشکی و دندان پزشکی، مد، کفش، جواهرات و عینک نیز باز کنند تا آنجا که امروز شاید تصور پرینت گرفتن غذا از سایت یک رستوران برای یک شب مهمانی دیگر رویایی غیر قابل تصور نباشد

یک پرینتر سه بعدی با قیمت 3000 دلار

هرچه تکنولوژی پیشرفت‌های بیشتری را تجربه می‌کند انتظار می‌رود که کاربردهای عملی‌تری را برای مشتریانش به ارمغان بیاورد، همانطور که پس از پیشرفت تکنولوژی پرینترهای سه بعدی امروزه محصولات مرتبط دیگری سنسورها و اسکنرهای سه بعدی قابلیت‌های این محصول را بی حد و مرز کرده است.

به تازگی ناسا در جهت ساخت بخش‌هایی از موشک با استفاده از پرینتر سه بعدی تلاش‌هایی کرده است و به این فکر افتاده که با استفاده از این تکنولوژی برخی موجودات زنده را به فضا و سایر سیاره‌ها طراحی کرده و بفرستد. اما در میان تمام امکانات مفیدی که پرینترهای سه بعدی هر روزه در اختیار ما قرار می‌دهند، کاربرد این فناوری برای حفظ جان انسان‌ها جایگاه ویژه‌ای دارد. پرینترهایی که وظیفه حفظ جان انسان‌ها با پرینت گرفتن از اعضای بدن را برعهده دارند با نام بیوپرینتر شناخته می‌شوند

آشنایی با چاپگرهای سه بعدی

امروز اگر آرزوی داشتن وسیله ای را بکنید (حتی اگر ان وسیله ساخته نشده است) می توانید آن را به کمک رایانه طراحی کنید و سپس به کمک نرم افزار مناسب، آن را برای تحویل به چاپگر سه بعدی آماده کنید تا جسم مورد نظر شما را بسازد.

چاپگرهای سه بعدی، با استفاده از مواد موجود در کارتریجهای خود (مثلا مواد اولیه پلاستیکی یا رزینی) لایه به لایه اجزای جسم مورد نظر شما را بر روی صفحه ای می گسترانند (یا بعبارتی چاپ می کنند) با قرار گرفتن لایه های مختلف رزین بر روی هم و سفت شدن آنها جسم مورد نظر شما به شکل نهایی و مورد نطر خود می رسد(درست مثل آنکه با لگو های خانه سازی لایه به لایه خانه اسباب بازی را برای فرزندتان بسازید) به این ترتیب شما می توانید با هزینه ای نسبتا کم در خانه یا کارگاه خود نمونه هایی از وسیله ای که در نظر دارید را بسازید. نمونه های ارزان قیمت چاپگرها سه بعدی اکنون با قیمت خدود ۱۰هزار دلار قابل تهیه هستند. (می توانید در شکل زیر یک نمونه دستگاه چاپگر سه بعدی را ببینید)

چاپگر سه بعدی

اگر وسیله مورد نظر شما دارای قطعات پیچیده تر باشد، می توانید هر یک از قطعات را جداگانه پرینت کنید و بعد آنها را روی هم مونتاژ کنید. همچنین با توجه به نوع چاپگر سه بعدی تان می توانید از مواد مختلفی در کارتریجها استفاده کنید و ابزارهای متنوع تری بسازید.

این تکنولوژی روز به روز در حال گسترش است و با ارزانتر شدن چاپگرها و مواد اولیه مورد استفاده، در بخشهای مختلفی مورد استفاده قرار می گیرند. مثلا قنادی که شیرینی ها و بیسکوییتهای جالب و عروسکی را با استفاده از این چاپگرها می سازد یا دانشجویی که طرح هواپیمای خود را با استفاده از چاپگرهای سه بعدی به مدل عینی تبدیل می کند.

چاپگرهای سه بعدی در پزشکی

پژوهشگران دانش پزشکی معمولا سعی می کنند در لبه علم زندگی کنند، یعنی آخرین تکنولوژی های روز را رصد کرده و آنها را در رشته پزشکی به خدمت می گیرند. در مورد فن آوری چاپ سه بعدی هم، با وجود نو بودن این تکنولوژی، استفاده از آن در کارهای تحقیقی و حتی درمانی پزشکی اغاز شده و نمونه های کاربردی نیز تولید و استفاده شده اند. مثلا در بعضی کشورها با استفاده از پرینترهای سه بعدی، اندامهای مصنوعی اختصاصی برای هر بیمار تولید می شود. به این ترتیب پروتزهای تولید شده بیشتر سازگاری را با فیزیک بدن و نیازهای بیمار خواهد داشت.

با کمک این تکنولوژی بسیاری از جراحان و محققان قادر خواهند بود بزار مورد نیاز خود را طراحی کرده و در جراحی ها یا تحقیقات خود از آنها استفاده کنند.

استفاده های آموزشی از این تکنولوژی هم آغاز شده است. علاوه بر آن مدلسازی قبل از جراحی های پلاستیک یا زیبایی توسط جراحان این رشته مورد توجه قرار گرفته است.

سه بعدی و زنده

دانشمندان علوم پزشکی و مهندسین پزشکی تنها به ساختن ابزارها و اندامهای مصنوعی و بیجان بسنده نکرده اند و چاشنی جدیدی به این تکنولوژی افزوده اند که به چاپ سه بعدی، رنگ و بوی پزشکی داده است و آن استفاده از سلولهای زنده بعنوان ماده اولیه چاپگرهای سه بعدی است. بعبارتی دیگر قرار است سلولهای زنده با کمک چاپگرهای ویژه در کنار هم قرار داده شوند تا بافتهای جدید تولید شوند ایده بسیار بلندپروازانه ای به نظر می رسد اما راستش را بخواهید این ایده تقریبا به واقعیت پیوسته است.

سال پیش گروهی از دانشمندان در آمریکا توانستند رگهای خونی را با استفاده از چاپگرهای سه بعدی شبیه سازی کنند، به این صورت که دو قلم روبایتک، سلولهای اندوتلیال، سلولهای عضلانی صاف و فیبروبلاستها را کنار هم می چینند تا رگ خونی را مطابق سفارش شما بسازند. این کار برای هر ۱۰سانتی متر رگ با قطر چند دهم میلی متری، حدود ۴۵دقیقه وقت می برد، اما فرآیند بلوغ رگ پرینت شده حدود یک ماه وقت نیاز خواهد داشت، در این مدت جریانی از مواد مغذی از رگ عبور داده می شود تا رشد و استحکام دیواره رگها به حد قابل قبول برسد.

امسال هم گروه دیگری از دانشمندان دانشگاه واشنگتن فرآنید چاپ رگها را به کمک داربستی از مواد کلاژنی انجام دادند که باعث شد نه تنها نتایج بهتری از کارکرد در زمان کمتری محقق شود بلکه رگهای ساخته شده از پس آزمایشات کارکردی مانند جریان دادن خون (بدون چسبندگی و لخته)، ایجاد انعقاد در پاسخ به پوتنیئها و فاکتورهای لخته ساز، رشد و ایجاد انشعاب در پاسخ به پروتئین های محرک رشد و بر آمدند.

انتظار می رود بتوان از این رگها در جراحی های بایپس و آسیب های عروقی استفاده شود. دانشمندان امیدوارند در گامهای بعدی بتوانند به کمک سلولهای بنیادی و مواد محرک در داربستهای ویژه بافتی، سایر بافتهای بدن را نیز تولید برای نیازمندان به پیوند آماده کنند.

بیوپرینترهای اولیه نه تنها قیمت زیادی نداشتند بلکه شباهت زیادی نیز به پرینترهای صفحه‌ای ارزان داشتند. این پرینترها از قابلیت چاپ سه بعدی بی بهره بودند. در سال ۲۰۰۰در حالیکه پیش از آن دانشمندان توانسته بودند به منظور مطالعه برخی آزمایشات ژنی، با استفاده از پرینترهای جوهری بخش‌هایی ازDNAا نسان را بازآفرینی کنند؛ توماس بولاند، یک مهندس پزشکی به این فکر افتاد که اگر یک پرینتر جوهری می‌توانند ازDNA پرینت بگیرد پس یک وسیله مشابه نیز باید بتواند سایر اعضای بدن را پرینت کند.

حاصل تلاش مستمر بولاند طی سه سال باعث شد این دانشمند در سال ۲۰۰۳بتواند امتیاز اولین دستگاه چاپ سلولی را به خود اختصاص بدهد و نام پدر بیوپرینتیگ را دریافت کند. درحالیکه لابراتوار بولاند با مشکلات بیوپرینت دست و پنجه نرم می‌کرد، مهندسان دیگر از تکنولوژی پیرینترهای سه بعدی در سایر بخش‌های پزشکی بهره می‌بردند. این افراد توانستند پیوندهای استخوانی را با بهره بردن از سرامیک، تاج دندان را با استفاده از چینی، دستگاه‌های شنوایی را با استفاده از آکریلیک و برخی از اعضای خارجی بدن را با استفاده از پلیمر از طریق دستگاه پرینتر سه بعدی درست کنند

نکته‌ای که در کار این محققان نظر بولاند را به خود جلب کرد این بود که برخلاف پرینت‌های ژنی و اندام‌هایی که دانشمندان دیگر درست می‌کردند، سه بعدی بود. بنابراین بولاند و سایر پیشگامان بیوپرینتینگ با بهره‌گیری از تکنولوژی پرینترهای سه بعدی توانستند از مرحله کشیدن طرح زندگی روی پارچه یا کاغذ به ساخت پیکرهای زنده ارتقا دهند. قابلیت پرینت گرفتن سلول‌های زنده در ابعاد سه گانه در دنیای فناوری پزشکی به منزله معجزه‌ای بود که دنیای پزشکی را می‌تواند متحول کند

اگرچه هنوز قابلیت پرینت سه بعدی از اعضای بدن یا همان بیوپرینت نتوانسته جایگزین مطمئنی برای پیوند اعضا از روش سنتی به بیماران باشد با این حال دانشمندان در تلاشند با مطابقت بیشتر مواد مورد استفاده در این پرینترها با ارگانیزم طبیعی بدن قابلیت آنها را فزایش دهند.گوش، کلیه، رگ‌های خونی، بافت‌های پوستی و استخوان از اجزایی است که دانشمندان برای شبیه سازی آن با استفاده از پرینترهای سه بعدی در تلاش هستند و رویای پرینت یک قلب زنده نیز تازه‌ترین رویای این مهندسان پزشکی است.

مهندسی پزشکی و نقش پرینترهای سه بعدی در آن

چاپگرهای سه بعدی در پزشکی ایرکاس1

دانشمندان و محققان مهندسی پزشکی موفق شدند با استفاده از سلول های زنده انسان، ساختارهایی پرینت شده و سه بعدی با ابعاد و استحکام و ماندگاری کافی برای کاشت در بدن انسان بسازند.

طبق این مقاله ی مهندسی پزشکی، این سلول ها موفق شدند در فرایند پرینت سه بعدی زنده بمانند و ساختارهای تولیدی آنقدر پایدار بودند که دانشمندان بتوانند از آنها در بدن جوندگان بهره بگیرند.اگر این فناوری همان تاثیر و عملکرد را در بدن انسان از خود به نمایش بگذارد که دانشمندان در حیوانات دیده اند، پزشکان و مهندسان پزشکی به زودی موفق خواهند شد از پرینترهای سه بعدی زیستی در تولید غضروف و استخوان های جایگزین برای افرادی استفاده نمایند

که دچار آسیب دیدگی جسمی شده اند. و این موضوع می تواند نقطه ی عطفی در زمینه ی علم مهندسی پزشکی و پزشکی در دنیا باشد.البته لازم به ذکر است که تولید اندام ها و بافت های زنده با استفاده از پرینترهای سه بعدی اتفاق تازه ای نیست و دانشمندان,پزشکان,مهندسین پزشکی و زیست پزشکی که روی چنین مقوله ای کار می کنند.

و از آزمایش واکنش یک اندام به داروهای تازه گرفته تا بازگرداندن شکل اندامی که فرد در اثر سانحه از دست داده همگی از جمله موارد کاربرد این اندام ها بوده اند.چندی پیش شرکتی به نام Organavo بافت های کلیه را با استفاده از این پرینترهای سه بعدی تولید کرد تا از آنها در تست داروهای جدید بهره بگیرد. سال گذشته نیز محققان استرالیایی موفق شدند.

پرینتر سع بعدی در مهندسی پزشکی

نوعی بافت مغزی را با استفاده از این دستگاه ها بسازند اما تا به امروز اغلب این بافت ها بیش از اندازه ناپایدار بوده اند یا اینکه به خاطر سادگی یا کوچکی بیش از اندازه شان، امکان کاشت آنها درون بدن انسان وجود نداشته است.علی خادم حسینی یکی از مهندسان زیست پزشکی دانشگاه هاروارد که در پروژه ساخت این پرینتر زیستی مشارکت نداشته است می گوید تحقیقات صورت گرفته اخیر را می توان گامی ارزشمند به سمت جلو قلمداد کرد و به لطف این دستاورد،

محققان برای نخستین بار توانستند نشان دهند که می شود با استفاده از این دستگاه ها بافت های کاربردی و عروقی با ابعاد مناسب را تهیه کرد که امکان استفاده از آنها در بخش های مهندسی پزشکی بالینی نیز وجود دارد.این پرینتر زیستی بهینه سازی شده الگوهای مربوط به ژل های حاوی سلول و مواد پلاستیک مانند زیست تخریب پذیر را با دقت به صورت لایه به لایه روی هم قرار می دهد و سپس نوعی پوسته خارجی موقتی ساخته شده ازپلیمر را روی آن قرار می دهد که به بافت امکان می دهد خود را نگه دارد و از هم فرو نپاشد.فرایند پرینت نیز کاملا بهینه سازی شده است تا این اطمینان حاصل گردد که سلول ها تا زمان جراجی و پیوند زنده می مانند. بعد از آنکه بافت پرینت شده درون ی ارگانیزم کاشته شد، مواد پلاستیکی مانند آن به تدریج تخریب شده و از بین می روند.

پرینتر سه بعدی برای تصویر برداری از بدن

در عین حال نیز سلول ها نوعی چهارچوب پشتیبان را ایجاد می کنند که به بافت پیوندی کمک می کند شکل خود را حفظ کند. در پایان این پروسه سلول ها خود را به بهترین شیوه ممکن سازماندهی کرده اند و در نتیجه نیازی به مواد پشتیبان نخواهند داشت.دانشمندان در ابتدا برای تست بافت های کاشتنی آنها را به زیر پوست موش ها تزریق کردند و با نتایج امیدبخشی روبرو شدند دو ماه بعد از این آزمایش گوش های پرینت شده ای که در بدن موش ها کار گذاشته شده بودند، همچنان شکل خود را نگه داشته بودند و بافت غضروفی آنها نیز به صورت کامل شکل گرفته بود.در مورد ماهیچه ها نیز دانشمندان دو هفته بعد از عمل جراحی دریافتند که بافت ماهیچه ای پیوندی به بدن موش عصب هایی را در اطراف خود ایجاد کرده است. همچنین استخوان های پیوندی که با استفاده از سلول های بنیادی انسان تهیه شده بودند در ادامه درون بدن موش ها کاشته شدند. این استخوان ها ۵ماه بعد از کاشته شدن به شکل گیری نوعی سیستم رگ های خونی درون بدن جانور منتهی شدند از مهندسان زیست پزشکی دانشگاه کارنگی ملون در این باره می گوید:

این کار واقعا شگفت انگیز است و حتی اگر از این روش برای کاشت گوش در بدن انسان استفاده شود نتیجه کار هم به لحاظ زیبایی و هم کاربردی مطلوب خواهد بود.برای بیمارانی که یکی از گوش های خود را از دست داده اند، استفاده از بافتی مشابه به گوش به لحاظ صوتی نیز بهتر خواهد بود چراکه شکل گوش نقشی کلیدی برای دریافت صدا داردGordana Vunjak-Novakovic از مهندسان زیست پزشکی دانشگاه کلمبیا که در این پروژه مشارکت نداشته در این باره اظهار داشت: آنها موفق شدند ساختارهایی بزرگ با طول عمر مناسبی که امکان کاشتشان درون بدن وجود داشته باشد بسازند که این دستاورد به هیچ وجه کوچک نیست.

پرینت سه بعدی از بدن در مهندسی پزشکی

 این یک مطالعه بسیار مهم است که ثابت می کند امکان تولید بافت های دارای شکل درون آزمایشگاه وجود دارد و می شود آنها را به کانال هایی مجهز نمود که نفوذ سلول ها و مایعات را تسریع نمایند.این پژوهش توسط دانشکده پزشکی انجام شد و بخشی از بودجه مورد نیاز آن نیز توسط ارتش ایالات متحده آمریکا تامین گردید، بنابراین احتمال می رود که ارتش این کشور در نظر دارد از این بافت ها برای بازسازی اندام های سربازانی استفاده نماید که در جنگ دچار مصدومیت یا نقص عضو شده باشند.

دانشمندان تا به حال این بافت ها را روی انسان آزمایش نکرده اند و به همین خاطر نمی دانیم که آیا این بافت ها از ایمنی کافی برخوردارند یا خیر.در هر حال آنطور که می گوید این تکنیک کاملا عملی به نظر می رسد و استفاده از آن به خصوص برای بازسازی غضروف ها مناسب است. او در ادامه ابراز امیدواری می کند که ابتدا امکان تست ساختارهای غضروفی روی انسان فراهم شود چراکه این بافت برخلاف ماهیچه ها و استخوان ها می تواند حتی بدون وجود سیستم خونی گسترده نیز به حیات خود ادامه دهد.

او می گوید غضروف ها بیشترین شانس را برای موفقیت دارند.موفقیت این تکنیک احتمالا با بسیاری موفقیت های دیگر نیز همراه خواهد شد؛.

می گوید به زودی رشته مهندسی بافت فعال تر و پربارتر از سابق می شود و ظرف یک یا دو سال آینده، شاهد پیشرفت های هیجان انگیزی حوزه مهندسی پزشکی خواهید بود که پرینت اندام را از قلمرو داستان های علمی و تخیلی خارج کرده و مستقیما زندگی بیماران را تحت تاثیر قرار خواهد داد.

به تازگی در نشریه نیچر بایوتکنولوژی، خبری مربوط به نقش پرینتر های سه‌بعدی در مهندسی پزشکی منتشر شده است که دانشمندان از نوعی پرینتر سه بعدی زیستی برای ساخت گوش، استخوان ها و ساختارهای ماهیچه ای بدن از مواد پلاستیک مانند و سلو های زنده متعلق به انسان، خرگوش، موش های صحرایی و موش های معمولی استفاده کرده اند

نقش پرینتر های سه بعدی در مهندسی پزشکی و پزشکی

نقش پرینتر های سه بعدی در مهندسی پزشکی

در فهرست زیرنگاهی به قابلیت های چاپ اعضای بدن در اتاق های جراحی آینده داشته است.

چاپ سه بعدی گوش

چاپ سه بعدی گوش با پرینترهای سه بعدی

مهندسان زیستی دانشگاه کورنل با اسکن سه بعدی گوش یک کودک یک قالب هفت تکه ای در برنامه سالیدورکس کدتولید کرده و قطعات آن را چاپ کردند. این قالب با ژلی غلیظ که از ۲۵۰میلیون سلول غضروف گاوی و کلاژن دم موش ساخته شده بود پر کردند. پس از ۱۵دقیقه این گوش از قالب خارج و به مدت چند روز در ظرف کشت سلول قرار گرفت. در عرض ۳ماه این غضروف به قدری گسترش می یابد که جایگزین کلاژن می شود.

بر اساس آمار ارائه شده تنها در آمریکا دست کم یک کودک از هر ۱۲هزار و ۵۰۰کودک دارای اختلال مادرزادی Microtia هستند ، شرایطی که طی آن گوش خارجی کودک رشد ناقص و از شکل افتاده دارد و کودک دچار نقص شنوایی می شود. برخلاف سایر اعضای مصنوعی گوش های تولید شده از سلول های انسانی با احتمال زیاد به طور موفقیت آمیز در اینده به بدن انسان پیوند زده می شوند.

چاپ کلیه

محققان موسسه پزشکی احیا کننده موسسه ویک فارست با یک چاپگر سه بعدی زیسته چندین نوع سلول کلیه تولید کردند و به طور همزمان یک قالب از مواد زیست تجزیه پذیر ساختند. محصول نهایی برای کشت سلولی آماده شد ؛ وقتی که این کلیه به یک بیمار پیوند زده شود ، همزمان با رشد بافت اصلی به آرامی قابلیت تجزیه خود به مواد زیستی را نشان می دهد.

۸۰درصد بیمارانی که در فهرست پیوند عضو قرار دارند در انتظار دریافت کلیه هستند. کلیه های چاپ شده زیستی هنوز کارایی ندارند اما وقتی که آنها عملکردشان واقعیت یابد ، استفاده از سلول های خود بیمار برای بافت کلیه به این معنا است که پزشکان روزی قادر خواهند بود که برای هر بیمار کلیه مورد نیازی را که کاملا با بدنش همخوانی دارد بسازند.

رگ های خونی چاپ شده

رگ های خونی چاپ شده با پرینترهای سه بعدی

محققان دانشگاه پنسیلوانیا و ام آی تی با استفاده از یک چاپگر به نامو نرم افزار متن باز یک شبکه از رشته های شکر داخل یک قالب را چاپ کرده و رشته ها را با پلیمتر گرفته شده از ذرت پوشاندند. پس از آن آنها یک ژل حاوی سلول های بافتی را وارد قالب کردند. وقتی که این ژل داخل قالب قرار گرفت ، آنها کل ساختار را در آب شستشو دادند که شکل حل شد و کانال های خالی در بافت باقی ماند.

محققان نشان دادند که پمپ کردن مواد مغذی از طریق این کانال ها بقای سلول های اطراف را افزایش می دهد. از آنجا که سلول های خونی سلامت بافت را حفظ می کند ، پی بردن به چگونگی افزایش مقیاس و چاپ یک سیستم عروقی بزرگتر و قویتر کلید چاپ کل بافت ها است

چاپ پوست پیوندی

محققان ابتدا از یک اسکن و نقشه های سه بعدی برای مشخص شدن وضعیت زخم بیمار استفاده کردند. دریچه یک چاپگر آنزیم ترومبين و چاپگر دیگر سلول های آمیخته شده با کلاژن و فيبرینوژن بیرون می دهد ، پس از آن چاپگر یک لایه از فيبروبلاست انسانی و یک لایه از سلول های پوستی انسانی را که کراتينوسيت نامیده می شود روی هم قرار می دهد.

برای پیوند های پوست سنتی جراح ، پوست را از یک قسمت بدن گرفته و آن را به قسمت دیگر پیوند می دهد. محققان مؤسسه ویگ فارست امیدوارند بتوانند این روش را به قدری توسعه دهند که چاپ پوست جدید به طور مستقیم برای زخم امکان پذیر باشد. آنها در نهایت می خواهند یک چاپگر قابل حمل بسازند که بتوان از آن در زمان فجایع طبیعی استفاده کرد.

چاپ استخوان سه بعدی

محققان دانشگاه واشنگتن قالب هایی را با پودر سرامیک (استخوان انسان ۷۰درصد از سرامیک تشکیل شده) چاپ کردند. آنها در چاپ این قالب ها از چاپگرهای سه بعدی کمک کردند که قطعات فلزی موتورهای الکتریکی را می سازد. یک چاپگر سرامیک را با لایه ای از چسب پلاستیک پر کرد ، این ساختار به مدت ۱۲۰دقیقه با دمای ۱۲۵۰درجه سانتیگراد پخته شد و برای کشت سلول های استخوان انسانی آماده شد.

هر سال میلیون ها نفر از تصادفات اتومبیل جان سالم به در برده اما دچار شکستگی های پیچیده می شوند که ترمیم آنها با روش های سنتی دشوار است. پزشکان می توانند با استفاده از اسکن های آم آر آی ، استخوان لازم برای پیوند را که دقیقاً با شکستگی تطابق دارد چاپ کنند.

cyberknife www.ircas.ir

سایبرنایف، شیوه‌ای نوین در درمان سرطان

سرطان، یکی از مشکلات بشر است که انسان ھا در طی سالیان دراز با استفاده از ھمه حوزه ھای مختلف دانش و فناوری -ونه فقط پزشکی- سعی کرده اند به تدریج شناخت خود رااز آن بیشتر کنند، تا درمان ھایی برای آن پیدا کنند و اگر در مورد برخی از انواع آنھا، درمان ھا،علاج قطعی نبوده اند، دست کم بر طول عمر و یا کیفیت زندگی بیماران در روزھا و ماه ھا وسال ھای باقیمانده عمر بیفزایند.

سایبرنایف جدید ترین روش درمان تومورهای سرطانی به صورت جراحی بسته میباشد و کاملا میتواند جایگزینی برای عمل جراحی باز باشد با این تفاوت که درمان با این روش بدون درد،خونریزی و کمترین عوارض جانبی برای بیماران سرطانی میباشد.

علاوه بر این درصد موفقیت و نابود کردن تومورهای سرطانی با این روش بسیار بالاست.

سایبر نایف روباتی است که که به روشی غیر تهاجمی و با هدف قرار دادن بسیار پر قدرت و دقیق تومورسرطانی و یا غیر سرطانی ، به پرتو درمانی می پردازد که جایگزین بسیار مناسبی برای عملهای جراحی برای خارج کردن تومور است. با استفاده ازعکسبرداری های لحظه ایی و دقت بالای این روبات هم اکنون پزشکان میتوانند سرطان هایی را که هیچگاه تصور نمی شد قابل درمان و یا در دسترس جراحان باشند را درمان کنند.

سایبر نایف با بازوی روباتیک خود وبا پرتوهای هماهنگ وارسال آن از مسیرهای چندگانه محل دقیق تومور را هدف و تومور را نابود کند . به وسیله این روش درمان ،میزان عوارض جانبی کاهش پیدا میکند زیرا این دستگاه پرتوهای تابشی را به محل دقیق تومور می تاباند و از درگیر کردن بافتهای سالم آن خوداری میشود

بنابراین استفاده از این روش برای درمان تومورهایی که در محل های بسیار حساس (مانند تومور مغزی و یا تومور نخاع) بسیار مفید و حیاتی میباشد . به وسیلهء بازوهای روباتیک سایبر نایف دیگر نیازی به استفاده از قالب سر و فیکس کردن سر بیمار در پرتو درمانی تومور مغزی نیست واین درمان را برای بیمار بدون درد خواهد کرد

به علاوه، تکنولوژی جدید سایبر نایف میتواند هدف های متحرک مانند سرطان شش و ریه را هم نابود کند. این دستگاه قابلیت تنظیم بر اساس حرکات مرتب سینه هنگام نفس کشیدن را دارد . این باعث میشود که دیگر نیازی به نگهداشتن نفس توسط بیمار نباشد و درمان با سرعت بیشتری پیش رود. بدون هیچ برش و یا بیهوشی در طول درمان، اکثر بیماران میتوانند پس از پایان جلسه درمان به زندگی عادی خود برگشته و به فعالیت روزانه خود بپردازند

نتیجه عمل به وسیله سایبر نایف در بسیاری ازغدد سرطانی بدن مخصوصا مغز، نخاع ، شش ، کلیه ،پانکراس ،ستون فقرات و پروستات شگفت انگیز است و درصد بسیار بالایی از بیمارن هیچ گاه دیگربه بیمارستان بر نمیگردند . باید در نظر گرفت که سایبر نایف برای تمامی تومورهای سرطان قابل استفاده نمیباشد بعنوان مثال نمیتوان از سایبر نایف جهت درمان سرطان سینه و یا کولون استفاده نمود

سایبرنایف جدید ترین روش درمان تومورهای سرطانی به صورت جراحی بسته میباشد و کاملا میتواند جایگزینی برای عمل جراحی باز باشد با این تفاوت که درمان با این روش بدون درد،خونریزی و کمترین عوارض جانبی برای بیماران سرطانی میباشدعلاوه بر این درصد موفقیت و نابود کردن تومورهای سرطانی با این روش بسیار بالاست.

همان طور که می دانیم پرتودرمانی یکی از درمان‌های سرطان است که در آن با تابانیدن اشعه بر توده سرطانی، سلول‌های سرطانی کشته می‌شوند. پرتودرمانی با اهداف و شیوه‌های متنوع و متفاوتی، انجام می‌شود. انجام پرتودرمانی نیاز به امکانات و محاسبات دقیق دارد، باید دقیقا محاسبه شود که چه میزان اشعه به بدن تابانیده شود، این میزان اشعه باید دقیقا بر هدف متمرکز شود.

سایبرنایف جدید ترین روش درمان تومورهای سرطانی به صورت جراحی بسته میباشد و کاملا میتواند جایگزینی برای عمل جراحی باز باشد با این تفاوت که درمان با این روش بدون درد،خونریزی و کمترین عوارض جانبی برای بیماران سرطانی میباشد.

از آنجا که توده‌ای که اشعه می‌گیرد در عمق بدن قرار دارد، باید اشعه طوری تابانیده شود که اعضای سر راه تحت تأثیر قرار نگیرند به همین منظور گاهی اشعه کل مورد نیاز را محسابه می‌کنند و از چند مسیر اشعه را به بدن می‌تابانند، طوری که نهایتا میزان کلی پرتو دریافتی برای کشتن سلول‌های سرطانی کافی باشد، اما از آنجا که اشعه به چند باریکه تقسیم شده و از چند زاویه به بدن تابانیده شده، اعضای سر راه آسیب نمی‌بینند.انجام همین فرایند مشکلات تکنیکی فراوانی دارد، مثلا تصور کنید که بیماری گلیوما در نزدیک عصب بینایی دارد، در این صورت حتی نیم میلیمتر، هم برای ما اهمیت فراوان دارد، چون هر اشتباهی می‌تواند منجر به نابینایی مریض شود.

سایبرنایف، شیوه‌ای است که به وسیله دکتر جان آر آدلر، استاد جراحی مغز و اعصاب و پرتودرمانی دانشگاه استنفورد و همچنین پیتر و راسل شونبرگ از شرکت پژوهشی شونبرگ، بنیان نهاده شد. در این شیوه البته خبری از چاقوی واقعی نیست ولی پرتو تابانیده شده به مانند چاقویی دقیق و بدون درد، بدون اینکه نیاز به بیهوشی باشد، عرصه را بر سلول‌های سرطانی تنگ می‌کند.

سایبرنایف دو جزء اصلی دارد

- پرتوی که توسط یه شتاب‌دهنده خطی ذرات تولید می‌شود

- یک بازوی روباتیک که این باریکه انرژی تولید شده را به نقطه مورد نظر بدن، هدایت می‌کند

هدف‌گیری تومورها در سایبرنایف با دقت بیشتری، نسبت به شیوه‌های معمول صورت می‌گیرد. سایبرنایف نخستین بار در سال ۱۹۹۰معرفی شد. اولین بار از روبات «فانوک» ساخت ژاپن در سایبرنایف استفاده شد اما سیستم‌های مدرن‌تر از روبات آلمانی موسوم به KUKA KR 240استفاده می‌کنند.

پرتو اشعه ایکس تولیدی با انرژی شش مگاوات، انرژی دارد، سایبرنایف می‌تواند هر دقیقه ششصد سانتی گری انرژی پرتو بتاباند، اما مدل‌های جدیدتر می‌تواند هشتصد سانتی گری را منتقل کنند. این پرتوها با استفاده از موازی‌سازها ی  collimator   هایی موازی می‌شوند و روی نقطه مورد نظر با اندازه دلخواه که مثلا می‌تواند از پنج میلیمتر تا شصت میلیمتر متغیر باشد، متمرکز شود.

دور بیمار، دوربین‌های اشعه ایکس‌ای قرار داده می‌شوند که موقعیت آناتومیک عضو هدف را به دقت مشخص می‌کنند، موقعیت بدن، با جایگاه توده که به وسیله سی‌تی یا MRI مشخص شده است، مقایسه می‌شود و یک برنامه کامپیوتری با دقت بازوی روبات را هدایت می‌کند، طوری که پرتو با دقت به توده تابانیده شود.

می توان سایبر نایف را نیزبه این شکل نیز تعریف کرد

روباتی که به روشی غیر تهاجمی و با هدف قرار دادن بسیار پر قدرت و دقیق تومورسرطانی و یا غیر سرطانی ، به پرتو درمانی می پردازد که جایگزین بسیار مناسبی برای عملهای جراحی برای خارج کردن تومور است. با استفاده از عکسبرداری های لحظه ایی و دقت بالای این روبات هم اکنون پزشکان میتوانند سرطان هایی را که هیچگاه تصور نمی شد قابل درمان و یا در دسترس جراحان باشند را درمان کنند.

سایبر نایف با بازوی روباتیک خود و با پرتوهای هماهنگ و ارسال آن از مسیرهای چندگانه محل دقیق تومور را هدف و تومور را نابود کند . به وسیله این روش درمان ،میزان عوارض جانبی کاهش پیدا میکند زیرا این دستگاه پرتوهای تابشی را به محل دقیق تومور می تاباند و از درگیر کردن بافتهای سالم آن خودداری میشود بنابراین استفاده از این روش برای درمان تومورهایی که در محل های بسیار حساس (مانند تومور مغزی و یا تومور نخاع) بسیار مفید و حیاتی میباشد . به وسیله ی بازوهای روباتیک سایبر نایف دیگر نیازی به استفاده از قالب سر و فیکس کردن سر بیمار در پرتو درمانی تومور مغزی نیست و این درمان را برای بیمار بدون درد خواهد کرد.

به علاوه، تکنولوژی جدید سایبر نایف میتواند هدف های متحرک مانند سرطان شش و ریه را هم نابود کند. این دستگاه قابلیت تنظیم بر اساس حرکات مرتب سینه هنگام نفس کشیدن را دارد . این باعث میشود که دیگر نیازی به نگهداشتن نفس توسط بیمار نباشد و درمان با سرعت بیشتری پیش رود. بدون هیچ برش و یا بیهوشی در طول درمان، اکثر بیماران میتوانند پس از پایان جلسه درمان به زندگی عادی خود برگشته و به فعالیت روزانه خود بپردازند.

برای نابود کردن تومور اعضایی که حین عمل ثابت نیستند و حرکت می‌کنند مثل با تومور ریه و پانکراس باید چه کار کرد؟ اگر از فناوری مناسبی استفاده نشود، در حین پرتودرمانی، اعضای سالم مجاور توده، هم در معرض توده قرار می‌گیرند و میزان پرتودهی توده هم کاهش می‌یابد.برای این منظور، از سیستمی به نام سیستم همگام‌سازی استفاده می‌شود. در این شیوه الیاف اپتیکی روی پوست شکم قرار داده می‌شوند که حرکت شکم را حین پرتودهی مشخص می‌کنند، یک الگوریتم کامپیوتری میزان حرکت شکم را محاسبه می‌کند و به بازوی روباتیک دستور می‌دهد که متناسب با حرکت شکم، تغییر جهت دهد.

نتیجه عمل به وسیله سایبر نایف در بسیاری ازغدد سرطانی بدن مخصوصا مغز، نخاع ، شش ، کلیه ،پانکراس ،ستون فقرات و پروستات شگفت انگیز است و درصد بسیار بالایی از بیمارن هیچ گاه دیگربه بیمارستان بر نمیگردند. باید در نظر گرفت که سایبر نایف برای تمامی تومورهای سرطان قابل استفاده نمیباشد بعنوان مثال نمیتوان از سایبر نایف جهت درمان سرطان سینه و یا کولون استفاده نمود.

نحوه کلی درمان بوسیله سیستم روباتیک سایبر نایف به صورت زیر است

مرحله اول : بسته به نوع تومور سرطان از بیمار ام آر آی و یا سی تی اسکن تهیه میشود.

مرحله دوم : اطلاعات سی تی اسکن و ام آر آی به سیستم کامپیوتری سایبرنایف جهت برنامه ریزی درمان داده میشود .نرم افزار پیشرفته این سیستم روباتیک به صورت بسیار دقیق برای نابود کردن تومور ،نوع ،مقدار و جهت تابش پرتو را برنامه ریزی میکند . در این مرحله با نظر متخصص مشخص میگردد چند جلسه برای درمان تومور کافی میباشد.

مرحله سوم : بیمار به اتاق سایبر نایف انتقال پیدا کرده و بر روی تخت دراز میکشد و در حالی که ماسکی بر روی صورت دارد و به موسیقی گوش میکند و بدون درد مورد درمان قرار میگیرد. معمولا هر دوره کمتر از ۵۰دقیقه به طول میانجامد و بیمار میتواند بعد از آن به محل اقامت خود بازگردد.

بسته به نوع تومور تعداد جلسات سایبر نایف مشخص میشود که به صورت معمول بین ۳تا ۱۰جلسه خواهد بود هر چند در تومورهای پیشرفته جلسات بیشتری نیاز است.

یکی از ویژگی های سایبر نایف این است که می‌توان بین جلسات درمانی فاصله انداخت که از نظر بالینی گاهی مفید است. علت این است که سلول‌های سرطانی مکانیسم ترمیم ضعیف‌تری نسبت به سلول های سالم دارند، در فاصله بین جلسات سایبرنایف، سلول‌های سالم غیرسرطانی می‌توانند ترمیم شوند، در حالی که هنوز سلول‌های سرطانی ترمیم پیدا نکرده‌اند. چنین فاصله‌اندازی بین جلسات درمان را نمی‌توان در شیوه‌های روتین، اعمال کرد.روش‌های پرتودرمانی روتین ممکن است به جلسات روزانه نیاز داشته باشند که ممکن است نهایتا چند هفته طول بکشند.

سایبر نایف شیوه ای جدید برای درمان سرطان

سایبر نایف روشی برای درمان سرطان کنسرسیوم ایرکاس

 

dental laser technology www.ircas.ir

کاربرد لیزر در دندانپزشکی

با پیشرفت مداوم و روز افزون علم طبیعتا زندگی بشر دستخوش تغییرات و دگرگونی های فراوانی شده است و البته پیش از زندگی خود علم است که مدام دستخوش تغییر و تحول است.یکی از این علوم که به تعبیری در جبهه نخست تحولات قرار گرفته و سالانه مقالات علمی و پژوهشی بسیاری با موضوع های متفاوت با محوریت آن صورت می گیرد علم پزشکی و زیر شاخه های متعدد آن است.دندانپزشکی نیز به عنوان یکی از زیرشاخه های مهم دانش پزشکی از این قاعده مستثنی نیست.این رشته با عضوی از بدن سروکار دارد که به بسیاری که به بسیاری از مقوله های گوناگون در سلامت و فعالیت های روزانه هر انسان؛از زیبایی و عملکرد دستگاه گوارش گرفته تا صحبت کردن معمولی مربوط است.یکی از روش های نوینی کهچند سالی است به کمک دندانپزشکان آمده و به سبب سهولت و کارایی زیاد؛فراگیری قابل توجهی هم پیدا کرده لیزردرمانی در دندانپزشکی است.

بیش از چهل سال است که لیزر ها در پزشکی و دندانپزشکی کاربرد پیدا کرده اند و امروزه تحولات نوینی در این زمینه در حال شکل گیری است.تحقیقات اولیه در مورد کاربرد لیزر در دندانپزشکی را استاین و ساگناس در سال ۱۹۶۰شروع کردند و استفاده از آن به عنوان فرز یا مته دندانپزشکی در تراش دندان و برداشتن پوسیدگی های آن شگفت آفرین بود اما از آن جایی که دندان عضو زنده و پالپ دندان (که در اصطلاح عموم به آن عصب می گویند) عضو حیاتی بسیار حساسی است و آسیب های حرارتی حاصل از لیزر در پالپ دندان و بافت های پریودونتال سبب نکروز پالپ دندان (مرگ مغزی دندان) می شد؛بنابراین آهنگ فراگیر شدن کاربرد لیزر در دندانپزشکی موقتا کمی فروکش کرد و محققان را به فکر بیشتری واداشت تا راهی برای استفاده از لیزر در بافت های سخت دندان بیایند.سرانجام پس از تحقیقات گسترده محققان توانستند از لیزر های سرد و یا کم حرارت جهت برداشتن بافت های سخت دندانی و تراش دندان استفاده کنند.استفاده از اثرات گرمایی تخریبی لیزر در دندانپزشکی به صورت چاقو در جراحی بافت های نرم دهان و سایر نواحی بدن است.

لازم به ذکر است که کاربرد لیزرها در دندانپزشکی تنها به جراحی بافت های نرم یا سخت دهان و دندان خلاصه نمی شود؛بلکه از لیزرهای با توان پایین در حالات بسیاری مانند تحریک فعالیت سلول ها؛ترمیم سلولی و بافت ها؛فیزیوتراپی ناحیه دهان؛دندان ؛فک و صورت و بسیاری از درمان های دندانپزشکی مانند تسکین و کاهش درد؛ کاهش ادم(تجمع مایعات در بافت های نرم بدن) و التهابات؛ایمونولوژی؛بی حسی وطب سوزنی استفاده می شود.

به طور کلی لیزر ها در دندانپزشکی ؛برحسب کاربرد های گوناگون؛ به دو گروه تقسیم می شوند:

-لیزرهای نرم؛سرد و یا بدون حرارت

-لیزرهای سخت؛ گرم و حرارتی و یا جراحی

لیزرهای نرم:

لیزرهای نرم و یا سرد با انرژی پایین نه تنها اثرات حرارتی تخریبی ندارند بلکه دارای اثرات تحریکی؛ترمیمی و بیولوژیک نیز هستند.این لیزرها در طول موجی عمل می کنند که سبب تحریک و فعالیت بیولوژیک سلولی و بافتی می شود و در کاهش و تسکین درد و کاهش ادم و التهابات موثر است به لیزرهای سرد مانند هلیوم نئون(He-Ne) و انواع نیمه رساناها مانند گالیوم آرسناید(GaAs) و گالیوم آلومینیوم آرسناید(Ga-Al-As) و اخیرا لیزرهای اکسایمر و اریبوم یاگ بیشتر توجه شده است.لیزرهای سرد در دندانپزشکی بیشتر در مواقع زیر به کار می روند:

تسکین و کاهش ادم و آماس و التهابات؛ترمیم بافتی؛تسریع بهبود زخم های آفتی؛کلاژن سازی؛حساسیت زدایی دندان های حساس؛بی حسی موضعی؛ترمیم زخم های دیر جوش و غیره..حرارت لیزر های سرد بسیار کم و قابل اغماض و در حدود یک درجه سانتیگراد است که تغییرات قابل مشاهده ای در ساختمان بافت به وجود نمی آورد.

لیزرهای سخت:

کاربرد لیزر در دندانپزشکی کنسرسیوم ایرکاس

لیزرهای سخت اثرات حرارتی و تخریبی دارند و از آنها در جراحی بافت های نرم دهان به صورت برش؛انعقاد و تبخیر استفاده می شود.از دیگر کاربرد های این لیزر هامی توان به موارد زیر اشاره کرد:

برداشتن پوسیدگی های دندان؛تمیز و ضدعفونی کردن کانال های ریشه دندان ها؛جرم گیری دندان ها و سخت کردن رزین های ترمیمی دندان. از معروف ترین لیزرهای سخت Nd:YAG ؛Er:YAG؛CO2Argonو Ho:YAG را می توان نام برد.

کاربرد لیزرها در شاخه های گوناگون دندانپزشکی

لیزرها در شاخه های مختلف دندانپزشکی مانند دندانپزشکی پیشگیری؛ترمیمی؛اندودونتیکز و جراحی دهان کاربردهای متنوعی یافته اند که در اینجا به اختصار به آنها اشاره می شود:

دندانپزشکی پیشگیری

لیزر با توان پایین سطح مینای دندان را صاف؛ هموژن و براق میکند.مقاومت مینا و عاج را در مقابل پوسیدگی دندان بالا می برد و نفوذپذیری و حلالیت مینا را کاهش و میزان جذب فلوراید با مینا را افزایش می دهد.همچنین اتصال پلاک های میکروبی به سطح دندان را کاهش می دهد و به علت تراکم مواد معدنی سبب سخت تر شدن مینا و عاج می شود و به پیشگیری از پوسیدگی های شیاری سطوح جونده دندان ها به نام سیلنت تراپی؛کمک می کند و سبب اتصال هیدروکسی آپاتیت ها به مینای دندان می شود.

دندانپزشکی ترمیمی

کاربرد لیزر دندانپزشکی مهندسی پزشکی

لیزر با توان بالا سبب تبخیر و نسبتا زبر شدن سطح مینای دندان می شودکه عامل مهمی در محکم نگهداشتن مواد ترمیمی؛رزین ها و کنده شدن دندان است.لیزر همچنین در حساسیت زدایی دندان نیز به کار می رود؛بدین صورت که توبول های عاجی دندان را مهر و موم میکند و حساسیت دندان ؛مخصوصا حساسیت به سرما را کاهش می دهد و یا از بین می برد بنابراین لیزر می تواند در غیر حساس کردن تراش های دندانی برای ترمیم پرکردگی و روکش گذاشتن دندان ونیز برای خارج کردن کامپوزیت های ترمیمی کاربرد موثری داشته باشد.

اندودنتیکز یا معالجات کانال ریشه دندان

لیزر در پالپوتومی بدون درد و خونریزی دندان نیز به کار می رودکه سبب تبخیر محتویات کانال دندان می شود و آن را استریل می کند.دیواره کانال را گلیز یا براق و سوراخ آپکس دندان را با جوش دادن مسدود و در نتیجه از رخنه مایعات به خارج جلوگیری می کند.لیزر در ضدعفونی نمودن کانال دندان؛وسایل معالجاتی کانال؛ نوک ریشه دندان ؛ از بین بردن ضایعات پری آپیکال و کنترل خونریزی محل و کاهش درد و التهاب بعد از عمل نیز به کار می رود.

جراحی دهان

لیزر در جراحی بافت های نرم دهان یک ابزار برش دقیق و تقریبا بدون خونریزی با حداقل تخریب بافت؛درد؛ادم و اسکار بعد از عمل است.کمبود نسبی میوفیبروبلاست ها در هنگام ترمیم زخم های حاصل از جراحی لیزری می تواند یکی از عوامل کاهش اسکار باشد.لیزر به عنوان چاقوی جراحی هم برای برش و هم برای انعقاد؛تبخیر؛سوزاندن و خارج کردن ضایعات به کار می رود

برخی از مزایای لیزر در جراحی دهان و اعمال دندانپزشکی به شرح زیر است:

laser dentistry1

-لیزر هموستاز سریع؛محیط جراحی نسبتا خشک و دید کافی فراهم می کند و همچنین خونریزی کم و یا عدم خونریزی سبب سرعت عمل و کاهش زمان جراحی می شود.

-لیزر از آلودگی خون جلوگیری می کند و کاربرد آن برای بیماران مستعد باکتریمی بسیار مناسب است.

-لیزر می تواند محل عمل را با از بین برد میکروارگانیسم ها ضد عفونی کند و خطر سرایت عفونت به نواحی دیگر بدن و وسایل دندانپزشکی را کاهش دهد.

-لیزر ترس و اضطراب را در بیماران می کاهد و از بین می برد لذا کار با لیزر برای افراد نگران ؛نامتعادل و گریزان از اعمال دندانپزشکی بسیار مناسب خواهد بود.

-در عمل با لیزر بی حسی و بی دردی ایجاد می شود زیرا در اثر انعقاد رشته های عصبی در ۹۰%مواقع درد از بین می رود.

-جای زخم و برش لیزر به ندرت به بخیه و پانسمان محل نیاز دارد.

-عمل جراحی با لیزر سریع است و به علت عدم تماس فیزیکی لیزر آسیب و صدمات مکانیکی وارده به بافت های مجاور و نیز ترومای بعد از عمل ناچیز است.

-لیزرها بر حسب توان خروجی خود بافت ها را برش می دهند؛منعقد و یا تبخیر می کنند.

-لیزر تورم؛التهاب؛درد و اسکار بعد از عمل را کاهش می دهد و این خود باعث تحریک و ادامه فعالیت فیزیولوژیک طبیعی ناحیه عمل می شود

برخی از معایب لیزر نیز به شرح زیر است:

-گرانی و هزینه های بسیار بالای تجهیزات

-نبودن یک نوع لیزر برای کلیه اعمال دندانپزشکی

-احتمال آسیب اتفاقی به چشم بیمار و پرسنل و سوزاندن نواحی عمل نشده

-لیزر را برای دندان هایی که قبلا ترمیم فلزی داشته اند نمی توان استفاده کرد.

اثر کلینیکی لیزرها

اثر ضد درد و تسکینی:

اثر لیزر ها در تسکین ؛کاهش و از بین بردن درد به دو صورت زیر است:

-تغییر پلاریزاسیون در غشای اعصاب محیطی و کاهش سرعت هدایت عصبی که سبب تعدیل پیام های دردناک می شود.

تارهای عصبی بار الکتریکی مثبت در خارج دارند و در قسمت داخلی غشای سلولی بار منفی وجود دارد این پلاریزاسیون غشای عصبی با درد به هم می خورند و باعث عبور جریان الکتریکی یا انتقال درد می گردد. این اثرات با تغییراتی در غلظت یونی قسمت های داخلی و خارجی سلول همراه است.تابش لیزری سبب هیپرپولاریزاسیون غشای عصبی می شود و آستانه تحریک آن را بالا می برد و در نتیجه سبب کاهش درد یا عدم انتقال آن می شود.

-تولید و ترشح مواد متصله مورفین مانند آنکفالین ها و آندورفین ها که نوروترانسمیترهای مهارکننده احساس درد هستند.

در محل سیناپس های عصبی ؛نوروترانسمیترهای عصبی وجود دارند که عامل انتقال پیام های عصبی از یک سلول به سلول دیگر هستند.از طرفی نوروترانسمیترهای مهار کننده حس درد نیز مانند آنکفالین ها و آندورفین ها؛مواد بیولوژیکی در محل سیناپس های عصبی هستند و از انتقال پیام های دردناک عصبی جلوگیری و اثرات نوروترانسمیترها را خنثی می کنند.تابش لیزری سبب تحریک و ترشح آنکفالین ها م آندورفین ها می شود و بدین سان اثر ضد درد و تسکین خود را ایفا می کند.

لیزر ها در تسکین و از بین بردن درد نواحی مختلف دهان؛دندان؛فک وصورت؛مفصل گیجگاهی فکی؛کاربرد موثری دارد.

کاربرد های لیزر در دندانپزشکی 1

اثر ضدالتهابی:

تابش لیزر سبب کاهس مواد التهابی مانند پروستاگلاندین ها و پروستاسیکلین ها می شود.پروستاگلاندین ها(مانند PGE2) نقش مهمی در التهابات؛ادم و آماس بافتی دارند که در اثر آسیب های وارده به بافت آزاد می شوند و سبب اتساع و باز شدن عروق و بیرون ریختن پلاسما به داخل فضای بین سلولی و خارج سلولی می شوند که نتیجه آن تجمع مایعات میان بافتی ؛ادم؛التهاب و آماس است.در اثر تابش لیزر ؛پروستاگلاندین ها که عامل التهاب است و در نتیجه التهاب ادم و آماس و همراه با آن درد نیز کاهش می یابد.

اثر متابولیکی یا تغذیه ای:

تابش لیزر سبب تحریک و فعالیت عناصر داخل سلولی و بافتی می شود و بدین سان موجبات ترمیم و تکثیر سلولی و بافتی را فراهم می سازد و همچنین متابولیسم تنفسی سلولی؛تنظیم فعالیت پمپ های یون سدیم و پتاسیم در غشای سلولی است؛به علاوه سبب تحریک و فعال شدن DNAو RNA و جذب سلولی اکسیژن می شود و تحریک و فعالیت بسیاری از آنزیم ها؛تحریک میتوکندری؛افزایش سیتوکرومواکسیداز و افزایش سنتز ذخیره ATP از این طریق فراهم می شود.

اثر آکوپانکچر یا طب سوزنی:

لیزر در دندانپزشکی ایرکاس

روی پوست بدن نقاط ویژه ای به نام نقاط آکوپانکچر وجود دارد که از نظر هیستولوژیک؛پتانسیل الکتریکی؛ارگان های حسی و مقاومت با سایر نقاط پوست متفاوتند.تحریک نقاط آکوپانکچر ممکن است به سه طریق زیر باشد:

-سوزن های مخصوص

-طریقه شمیایی

-طریقه الکترومانیتیکی(نور-لیزر(

تابش لیزر به نقاط آکو پانکچر خاص ناحیه دهان و صورت سبب بی حسی و بی دردی دندان های فک بالا و پایین و جلوگیری از حالات تهوع بیماران می شود.به طور کلی می توان گفت کاربرد های لیزر در دندانپزشکی به سه گروه کلی تقسیم می شوند.اول تشخیص است که در این مرحله لیزر به عنوان ابزار تشخیص به کمک دندانپزشک می آید.دوم مرحله درمان و روش های درمانی و سوم آثار شبه دارویی لیزرهای کم توان یا کم شدت است.

در مرحله تشخیص مهم ترین مزیت لیزر در تشخیص ساده پوسیدگی های دندانی در مراحل اولیه پوسیدگی است.در امر درمان نیز با مزیت هایی که به مواردی از آن اشاره شد؛سعی بر این است که با توانایی های لیزر بافت ارزشمند دندانی را که قابل بازیافت نیست حفظ کرد و با حداقل تهاجم؛درمان های دندانپزشکی را انجام داد. جراحی بافت نرم دهان شامل بیوپسی؛نمونه برداری؛برداشتن ضایعات تومورال؛برداشتن ضایعات استخوانی؛درمان مقطعی آفت و تب خال؛حذف پوسیدگی های دندانی؛تراش بافت های دندانی برای تمامی منظورهای زیبایی و ترمیمی؛بلیچینگ یا روشن کردن رنگ دندان؛تغییر ساختار سطحی دندان ها و ایجاد مقاومت در برابر عوامل پوسیدگی؛از دیگر کاربردهای لیزر در دندانپزشکی به شمار می رود. در آن طرف در مقابل لیزرهای پرشدت که عاملی برای کندن و بریدن است دنیای زیبای لیزرهای کم شدت مطرح است.این نوع لیزرها با خواص ضد التهابی؛کاهش درد؛تاثیر ایمونولوژیکی و آثار متابولیکی به فرآیند بهبود روند درمان یا کاهش عوارض درمان کمک می کنند.

از مزایای لیزرهای کم توان می توان به مواردی چون ترمیم زخم های ناشی از جراحی ها؛کاهش درد در درمان های معمول دندانپزشکی؛بهبود ترمیم ضایعات استخوانی در درمان های پیوندی؛بازسازی استخوان؛ترمیم اعصاب آسیب دیده و درمان بعضی از بیماری های داخل حفره دهان اشاره کرد.

اندازه گيري ضربان و فشار خون بر اساس متد MMSB

اندازه گيري ضربان و فشار خون بر اساس متد MMSB

این مقاله روش تازه ای را در اندازه گیری ضربان و فشار خون به صورت پیوسته ارائه می کند. در این روش میدان مغناطیسی یکنواختی به صورت غیر تهاجمی در نزدیکی شریان خون رادیال بر روی پوست اعمال می کنیم و تغییراتی را که در میدان مغناطیسی اعمالی بر اثر حرکت ضربان دار خون ایجاد می شود، اندازه گیری کرده و بیوسیگنال های MMSB را می یابیم. با استخراج اطلاعات از سیگنال MMSB می توان ضربان قلب را اندازه گیری کرد. همچنین با داشتن سیگنال ECG که از فعالیت های الکتریکی قلب به دست می آید می توان زمان گذرای پالس (PTT) را اندازه گیری کرد و فشار خون را به دست آورد.

با پیشرفت علم بیوالکتریک، دستگاه های نظارت بر سلامتی که می تواند نظارت مداومی از وضعیت سلامتی یک فرد را همراه با استفاده آسان و راحتی کامل فراهم کند در حال متداول شدن است. از میان علائم حیاتی فیزیولوژیکی، ضربان قلب و فشار خون دو پارامتر متداول هستند که اغلب توسط دستگاه ها مورد بررسی قرار می گیرند و می توانند نشان دهنده عملکرد صحیح قلب باشند.

روش ها و فناوری هایی که برای به دست آوردن ضربان قلب و نظارت بر فشار خون وجود دارد، عموما می توان به اقسام الکتریکی، نوری، مایکرویو، صوتی، مکانیکی و مغناطیسی طبفه بندی کرد. اندازه گیری غیر تهاجمی فشار خون (BP) با استفاده از روش کاف، اطلاعات کافی را برای بیشتر استفاده های پزشکی فراهم می سازد. با این حال، روش های اندازه گیری بر پایه کاف، دارای معایبی نیز است که کاربرد آن ها را در برخی شرایط پزشکی محدود می سازد.

اندازه گیری طولانی مدت و پیوسته از فشار خون با استفاده از کاف امکان پذیرنیست.

بین هر دو اندازه گیری که با کاف انجام شود، توقفی در حدود ۱تا ۲دقیقه لازم است تا بافت محل اندازه گیری به حالت اولیه خود برگشته و اندازه گیری قابل اطمینان شود.

تورم ناشی از کاف ممکن است بیماران را اذیت کند و در بعضی از افراد که دارای بیماری های پوستی باشند این روش امکان پذیر نباشد.

خون مرتبط است و مي تواند به عنوان مرجعي براي تخمينات فشار خون (BP) استفاده شود. (زمان گذراي پالس PTT، زمان گرفته شده ضربان فشارخون شرياني از دريچه آئورت قلب تا محل مناسبي از قلب است، معمولا انگشت). اندازه گيري مرسوم PTT با استفاده از اختلاف زماني که بين پيک شکل موج از الکتروکارديوگرام (ECG) و حداکثر شيب شکل موج پلتسيموگراف نوري (PPG) است که از انگشت سبابه گرفته مي شود. با اين حال روش PPG انگشتي به اتصال نوري پيوسته با پوست نياز دارد و محدوديتي براي فعاليت هاي روزانه فرد بيمار محسوب مي شود. در اين مقاله براي به دست آوردن سيگنال هاي ضربان خون، به جاي روش مرسوم PPG انگشتي، از سيستم اندازه گيري ضربان و فشار خون بر اساس متد MMSB = Modulated magnetic signature of blood)   MMSB) استفاده مي کنيم. اين روش در کنفرانس بين المللي مهندسي پزشکي (IGBME) ارائه شده است. در شکل(۱) چگونگي اين روش شرح داده شده است.

چکونگی قرار گیری سنسور و آهنربا بر روی شریان

در اين روش يک آهن رباي مغناطيسي دائم يا الکتريکي و يک سنسور مغناطيسي را در نزديکي هم بر روي شريان اصلي قرار مي دهيم و تغييرات ايجاد شده در ميدان مغناطيسي را که توسط حرکت ضربات دار جريان خون ايجاد مي شود توسط سنسور مغناطيسي اندازه گيري مي کنيم. علت تغيير در اين ميدان مغناطيسي يکنواخت، سنسور مغناطيسي، پوست و شريان خوني را دربر مي گيرد. براي توليد ميدان مغناطيسي يکنواخت که براي باياس سنسور هم ضروري است، ميتوان از يک آهن رباي دائمي يا الکتريکي استفاده کرد. با استفاده از ديتاشيتي که براي آهن ربا تهيه شده است، مشخصات فيزيکي آهن ربا داراي قطري به اندازه ۶ميليمتر و ضخامتي در حدود ۲ميليمتر است. شدت ميدان مغناطيسي برابر ۲/۰تسلا و ضريب نفوذپذيري مغناطيسي نسبي آهنربا (µr)، برابر H/M 103×۵است. در شکل زير ميتوانيد شکل فيزيکي و خصوصيات آهنربا را مشاهده کنيد.

چگونگی ایجاد میدان مغناطیسی توسط آهنربا

براي باياس کردن سنسور GMR

جنس: نئوديوم آهن بور

براي تشخيص ضربان خون در اين مقاله از سنسور مگنتورزيستيو GMR به شماره AAH02-02 استفاده کرده ايم. سنسورهاي مگنتو رزيستيو، همان طور که از نام آن بر مي آيد، با تغيير ميدان مغناطيسي در مجاورت آن ها، مقاومت الکتريکي اين گونه از سنسورها تغيير مي کند و ولتاژي را در خروجي خود توليد مي کنند. در شکل ۴پايه هاي خروجي اين سنسور از شرکت NVE به مدل AAXXX-02 نشان داده شده است. همچنين شکل۵بلوک دياگرام اين قطعه را نشان مي دهد.

سنسور

در شکل زير نحوه عملکرد سنسور GMR را در ميدان هاي مغناطيسي متفاوت مشاهده مي کنيد.

همان طور که در شکل ۶مشخص است مي توان با اعمال ميدان مغناطيسي اعمالي مناسب پاسخ خروجي سنسور را در محدوده خطي قرار داد. براي کار در ناحيه خطي سنسور، بايد ديتاشيت سنسور مورد نظر را يافته و محدوده آن را بيابيم. به طور مثال سنسور GMR AAH002-02 شرکت NVE داراي ناحيه خطي در حدود ۶/۰تا ۳گوس است.

پاسخ غیر خطی سنسور

آهن رباي استفاده شده در اين مقاله داراي شدت ميدان مغناطيسي ۲/۰تسلا است (۱تسلا برابر ۱۰۰۰۰گوس است) که اين شدت ميدان براي باياسکردن سنسور GMR بسيار زياد است. براي اين منظور سنسور را در فاصلهاي از آهن ربا قرار مي دهيم تا تاثير ميدان مغناطيسي بر سنسور کاهش يابد. بنابراين با قراردادن آهن ربا در فاصله هاي متفاوتي از سنسور مي توان ميدان مغناطيسي اعمالي بر سنسور را کاهش و يا افزايش داد. براي به دست آوردن ميدان مغناطيسي اعمالي از سوي آهن ربا مي توان از معادله زير استفاده کرد.

کنسرسیوم ایرکاس

با در نظر گرفتن شدت ميدان مغناطيسي در حدودB=2/8 گوس، فاصله d در حدود ۲۵mm به دست مي آيد. اين مقدار از تاثيرات ميدان مغناطيسي باعث باياس شدن مطلوب سنسور GMR مي شود به طوري که عملکرد سنسور هميشه در ناحيه خطي قرار گيرد. در شکل ۷چگونگي قرار گيري سنسور و آهن ربا در فاصله مربوطه نشان داده شده است.

سنسور و آهن رباi

دستگاه گردش خون

نمونه هايي از اين نواحي که سيگنال MMSB مي تواند به راحتي به دست آيد شامل مچ دست، مچ پا، گردن و نواحي اطراف پيشاني هستند. در اين مقاله ما شريان راديال مچ دست را براي گرفتن سيگنال هاي MMSBانتخاب کرده ايم.

ecg mmsb کنسرسیوم ایرکاسi

نحوه اندازه گیری PTT

اندازه گيري انجام شده نشان مي دهد که اختلاف بين دو متد موجود بسيار ناچيز است. بنابراين با قطعيت مي توان گفت که روش تازه MMSB يک روش جايگزين عملي بر روش هاي موجود در اندازه گيري ضربان قلب است. اين روش بدون نياز به اتصالات الکتريکي و نوري بر روي پوست، اندازه گيري قابل اطميناني را در به دست آوردن ضربان قلب ارائه مي کند.اندازه گيري فشار خون با استفاده از زمان گذراي پالس PTT ؛ روش PTT اخيرا به عنوان روشي پيوسته، بدون کاف و غيرهجومي براي تخمينات فشار خون پيشنهاد شده است. زمان PTT توسط دو متد متفاوت (به طور معمول ECG و PPG) قابل اندازه گيري است که با سنجش زمان تاخير در انتشار ضربان خون در دو ناحيه شرياني از بدن( به طور مثال از شريان آئورت قلب تا شريان راديال) به دست مي آيد. بدين منظور دو سيگنال ECG و MMSB را مطابق شکل روبه رو به دست مي آوريم.

در شکل ۱۱سيگنال هايي که بر اساس ECG و متد MMSB از مچ دست به دست آمده است را مشاهده مي کنيد.

اندازه گیری زمان PTT

سيگنال هاي ECG و MMSB

سيگنال ECG ناشي از فعاليت هاي الکتريکي بطن هاي قلب وسيگنال MMSB ناشي از تغييرات ميدان مغناطيسي حرکت ضربان دار شريان راديال است. مي توان با اندازه گيري زمان بين قله سيگنال ECG تا حداکثر شيب سيگنال MMSB مقدار PTT را به دست آورد. فشار خون متوسط طبق زیر تخمين زده مي شود.

www.ircas.ir

فاصله d در واقع فاصله بين قلب فرد تا مچ دست است (مکاني که سيگنال MMSB به دست ميآيد). PTT زمان گذراي پالس اندازه گيري شده در واحد ثانيه است. ρ چگالي متوسط خون در حدود ۱۰۵۰Kg/m3 گزارش شده است.H ارتفاع بين قلب تا دست است که بين ۷cm تا ۹cm است. براي کليه بيماران h=8cm در نظر گرفته شده است.

در شکل ۱۲فشار خون متوسط توسط دو روش کاف و روش MMSB مورد مقايسه قرار گرفته است.

ضربان لحظه ای قلب

نتيجه گيري

کاربردهاي MMSB علاوه بر توانايي صحيح در اندازه گيري ضربان قلب، مي تواند در به دست آوردن مقادير PPT به جاي PPG انگشتي استفاده شود. استفاده از روش MMSB در مقايسه با PPG براي نظارت بر علائم فيزيولوژيکي همانند فشار خون بسيار راحت تر است.

آکوزش تعمیرات تجهیزات پزشکی

با پیشرفت روز افزون و توسعه تجهیزات پزشکی و مشکلات بسیار زیادی که بدلیل وارداتی بودن و استوک بودن اینگونه دستگاهها و همچنین بدلیل وجود تحریمهای بوجود آمده در زمینه ارائه خدمات شرکتهای اروپایی تولیدکننده تجهیزات پزشکی و نبود تکنسینهای مجرب در عرصه تعمیرات تجهیزات الکترونیکی پزشکی و بیمارستانی و آزمایشگاهی ،کنسرسیوم ایرکاس پس از سالها ارائه خدمات تعمیرات و طراحی برخی از تجهیزات پزشکی اقدام به برگزاری دوره های آموزش تعمیرات مدارات الکترونیکی تجهیزات پزشکی و بیمارستانی و آزمایشگاهی نموده است آموزش تعمیر تجهیزات پزشکی بصورت کاربردی ویژه بازار کار طراحی شده است. دوره اموزش تعمیر لوازم پزشکی ویژه رشته مهندسی پزشکی و واردکنندگان محصولات پزشکی و آزمایشگاهی میباشد. بطور کل ازدیاد این دستگاهها و پیشرفت این تجهیزات باعث شده که در کامتک روی مدارات آنها مورد بررسی قرار گیرد. تقریبا استراکچر برد دستگاههای پزشکی شامل بخش تغذیه، مین برد و بخش خروجی برد از یک الگوریتم تبعیت میکند. معمولا آموزشی که یک سرویسکار تجهیزات پزشکی نیاز دارد بداند و در کلاس بررسی میشود شامل آموزش تعمیر فشار سنج دیجیتال، آموزش تعمیر ترازوی دیجیتال، آموزش تعمیر سونوکیت، اسپیرومتر، تعمیر الکتروانسفالوگرام، اموزش تعمیر تجهیزات فراصوتی (اولتراسونیک در پرتونگاری)، آموزش تعمیر تجهیزات پرتو پزشکی، آموزش تعمیر تجهیزات پزشکی هسته‌ای، آموزش تعمیر شنوایی‌سنج (ادیومتر)، تعمیر الکتروکاردیوگرام، آموزش تعمیر سی تی اسکن، تعمیر رکتوسیگموئیدوسکوپ، اموزش تعمیر دستگاه ثبت نوار عصب و عضله میباشد.همچینین تعمیرکار تجهیزات آزمایشگاهی لازم است که آموزش تعمیر هود میکروبیولوژی، تعمیر انکوباتور کشت باکتری‌شناسی، اموزش تعمیر دستگاه آنالیزور، آموزش تعمیر فلیم فوتومتر، آموزش تعمیرات الکترولیت آنالایزر، اموزش تعمیر دستگاه تجزیه مواد شیمیایی خون، تعمیر دستگاه سانتریفوژ ۴۸شاخه، آموزش تعمیر دستگاه شمارنده گلبول‌های خون و سلول آزمایشگاهی، آموزش تعمیر دستگاه فتومتر (طیف سنج مواد متشکله خون) و آموزش تعمیر اتوآنالایزر را بداند.همچنین یک تعمیرکار تجهیزات اتاق عمل و تعمیرکار تجهیزات دندانپزشکی لازم است، آموزش تعمیر دستگاه ساکشن (مکش)، آموزش تعمیر الکتروکوتر، آموزش تعمیر کاپنوگراف، آموزش تعمیر مانیتور ( صفحه نمایش تجهیزات پزشکی)، آموزش تعمیر اکارتورها یا رترکتورها، اموزش تعمیر دستگاه مکش (ساکشن) دندان پزشکی، اموزش تعمیر یونیت دندان پزشکی و اموزش تعمیر اتوکلاو را یاد بگیرد.تعمیر و عیب یابی تجهیزات بیمارستانی و کلینیکی بطور کاملا عملی و توسط مسئولین تجهیزات پزشکی با سابقه كار بيمارستاني بیمارستان ارائه شده و اکثر جلسات آن در محیط بیمارستان تشکیل می شود.با توجه به نیمه خصوصی بودن دوره ها هنرجویان مستقیما تعمیرات دستگاهها را زیر نظر استاد مربوطه انجام میدهند.دوره ی آموزشی نگهداری و تعمیرات تجهیزات پزشکی برای علاقه مندان و بخصوص مهندسان رشته های مهندسی پزشکی ، مکانیک ، برق ، مکاترونیک و همچنین دندانپزشکان برگزار می گردد. شرکت کنندگان در این دوره ضمن آموزش تئوری مباحث و آشنایی با نحوه کار و عملکرد تجهیزات پزشکی بصورت عملی تعمیرات و عیب یابی تجهیزات پزشکی را نیز فرا می گیرند و آماده ورود به بازار عظیم تکنسین های پزشکی میشوند. کارآموزان در دوره تعمیرات بردهای تجهیزات پزشکی با مطالب زیر آشنا میشوند

آموزش الکترونیکی عمومی

آموزش الکترونیک دیجیتال

آموزش الکترونیک کاربردی تجهیزات پزشکی

آشنایی با مددارات الکترونیکی موجود در دستگاههای پزشکی

آموزش کار با لوازم تعمیرات بردهای پزشکی

آموزش صحیح تست و تعویض قطعات روی برد لوازم پزشکی

آشنایی با ساختار مدارات الکترونیکی پزشکی

آشنایی با تکنولژی لیزر در علم پزشکی و تجهیزات پزشکی

آشنایی با سسیستم های استریل لوازم پزشکی

آشنایی با انواع سنسورهای موجود در دستگاههای پزشکی

آشنایی با عملکرد اشعه ایکس در سیستم تصویر برداری

آشنایی با سیستمهای مانیتورینگ علائم حیاتی

آشنایی با انواع اصطلاحات دستگاههای پزشکی

نحوه شناخت بلوکهای مختلف بردهای تجهیزات پزشکی و بیمارستانی

آموزش نقشه خوانی مدارات الکترونیکی بردهای پزشکی

آموزش تحلیل مدارات الکترونیکی پزشکی

نحوه تعویض قطعات و تست صحیح قطعات روی برد

عیب یابی قطعات باتوجه به نوع عیوب ایجاد شده در دستگاه

عیب یابی مدارات با توجه به تست پوینهای موجود برروی برد

عیب یابی و شناخت آی سی های موجود روی برد

روشهای نوین جهت تست آی سی های روی برد

آشنایی با انواع آی سی های درایور بردهای پزشکی

آموزش برنامه ریزی و پروگرام آی سی های حافظه ای تجهیزات پزشکی

آموزش عملکرد منابع تغذیه سوئیچینگ و اینورتر دستگاههای پزشکی

آشنایی با ساختار فوت سوئیچها و جوی استیکهای تجهیزات پزشکی

آشنایی با ساختمان داخلی دستگاه ECG

برای کسب اطلاعات بیشتر و ثبت نام در دوره های آموزشی با کارشناسان این مجموعه تماس حاصل فرمایید

041-33369052

041-33369053

041-33369054

آمار سایت

تعداد اعضای آنلاین : 0

تعداد کل اعضای کنسرسیوم : 494

برای مشاهده اعضای آنلاین کلیک کنید

مراکز خدماتی و رفاهی طرف قرارداد

marakez

نماد اعتماد الکترونیک

logo کنسرسیوم دانشگاهیان و متخصصان ایران - تازه های مهندسی پزشکی 

حامیان کنسرسیوم ایرکاس

  • IRSME
  • RKA
  • ACS
  • IUE
  • RFTC
  • BQC
  • DNW
  • ICS
  • TUV-EMB
  • QAL
  • Ino
  • Allaiance
  • Tckit

تبلیغات در ایرکاس

دسترسی به ژورنال مقالات

az3

تصاویر اینستاگرام ایرکاس